Correlation of contractile dysfunction with oxidative energy production and tissue high energy phosphate stores during partial coronary flow disruption in rabbit heart.

نویسنده

  • R C Marshall
چکیده

The relationships between contractile function, myocardial oxygen consumption, and tissue high energy phosphate and lactate content were investigated during partial coronary flow disruption. The experimental preparation was an isolated, isovolumic retrograde blood-perfused rabbit heart. Both developed pressure (r = 0.94) and dp/dt (r = 0.95) exhibited strong linear correlations with myocardial oxygen consumption that were stable for up to 45 min after blood flow reduction. In contrast, tissue high energy phosphate content exhibited nonlinear relationships with both developed pressure and oxygen consumption such that systolic mechanical function and oxidative metabolism declined to 20 and 30% of control values, respectively, before significant abnormalities in myocardial high energy phosphate stores were observed. Similarly, developed pressure and oxygen consumption decreased to 36 and 48% of control, respectively, before abnormal tissue lactate content was detected. The results of this study indicate that: (a) mechanical function is closely related to the rate of oxidative energy production during partial coronary flow disruption, and (b) despite the development of significant contractile dysfunction, tissue high energy phosphate content remains at normal levels except under the most severely flow-deprived conditions. The preservation of tissue energy stores can be explained by the apparent coupling of contractile performance to oxidative energy production, which could function to maintain myocardial energy balance during partial coronary flow restriction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of metabolic substrate on rat heart function and metabolism at different coronary flows.

The influence of metabolic substrate on contractile strength, myocardial oxygen consumption (MVO2), high- and low-energy phosphate levels, and intracellular pH were determined in isovolumically contracting isolated rat hearts perfused with solutions containing either glucose or hexanoate at both high and low coronary perfusion pressures (CPP). Contractile strength was not significantly influenc...

متن کامل

Effects of exogenous free radicals on electromechanical function and metabolism in isolated rabbit and guinea pig ventricle. Implications for ischemia and reperfusion injury.

Oxygen-derived free radicals have been implicated in the pathogenesis of cardiac dysfunction during ischemia, postischemic myocardial "stunning," and reperfusion injury. We investigated the effects of oxygen-derived free radicals on cardiac function in intact isolated rabbit hearts and single guinea pig ventricular myocytes. In the intact rabbit ventricle, exposure to free radical-generating sy...

متن کامل

Increased myocardial dysfunction after ischemia-reperfusion in mice lacking glucose-6-phosphate dehydrogenase.

BACKGROUND Free radical injury contributes to cardiac dysfunction during ischemia-reperfusion. Detoxification of free radicals requires maintenance of reduced glutathione (GSH) by NADPH. The principal mechanism responsible for generating NADPH and maintaining GSH during periods of myocardial ischemia-reperfusion remains unknown. Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme...

متن کامل

Myocardial Energy Transport and Heart Failure

Abnormalities in myocardial energy metabolism occur in association with progression to congestive heart failure. Conceivably, alterations in cardiac energy metabolism may initiate trophic responses or remodeling noted in myocardium during various disease processes. This review will explore the relationship between myocardial remodeling, contractile dysfunction, and myocardial bioenergetics. Att...

متن کامل

Effects of hyperthermic stress on myocardial function during experimental coronary ischemia.

We evaluated hyperthermic influences on ischemic hearts by comparing two groups of intact working swine hearts (n = 20) made globally ischemic. Heart muscle temperature was selectively increased from 37.5 +/- 0.3 degrees C to 39.7 +/- 0.3 degrees C in one group (n = 11) by warming the coronary perfusate. Ischemia in normothermic hearts significantly (P less than 0.05) decreased mechanical funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 82 1  شماره 

صفحات  -

تاریخ انتشار 1988